17204

120 MINUTES

1.	The se A)	cond ionization B > Al > Ga	_	_			elements follow Sa > Tl > In >		der
	C)	B > Al > Ga			,		a > 11 > 11 > 6 a > TI > AI > 6		
2.		rborane C ₂ B ₄ H		e struct					
	A) C)	Closo – tetrah Closo – octah			B) D)		- trigonalbipyr no - icosahedr		
3.	Which and Xe A) B) C) D)	Structures are Structures are Structures are	same w differen	vith 0, 2 ont with 0, 1	and 1 l), 1 and and 2 l	one pai 2 lone one pai	rs of electrons pairs of electrons rs of electrons pairs of electrons	respecti ons resp respecti	ively ectively vely
4.	Which A)	among the following S ₄ N ₄	lowing i	is therm SiC	ochron	nic? C)	Al_2Se_3	D)	XeOF ₄
-	,		,		,	,		,	•
5.	Three A)	most abundant Fe, Co & Ti					st are Fe, Ti & Mn	D)	V, Mn & Cu
6.	Tungsten bronzes used in the production of metallic paints are non stoichiometric M_xWO_3 . Where M is						iometric		
	A) C)	Na or K A lanthanide			B) D)		caline earth me e above	etal	
7.	Which A) C)	among the following the Ce ⁴⁺ , Gd ³⁺ , Lu Ce ³⁺ , Pm ³⁺ , E	1^{3+}	lanthani	de ions B) D)	Gd^{3+} ,	spin only magr Pm ³⁺ , Er ³⁺ Gd ³⁺ , Lu ⁴⁺	netic mo	ment?
8.	The ac	eidity of oxides	of Mn 1	follows	the ord	er			
	A)	$MnO < MnO_2$	$<$ Mn_2C	$O_3 < Mn$	$_2O_7$				
	B)	$MnO < MnO_2$							
	C) D)	$Mn_2O_7 < MnO$ $MnO < Mn_2O$							
9.	Which	among the followism?	lowing	complex	kes shov	w both	linkage isomer	rism and	stereo
	(i)	[Pt (Cl ₂) (NH ₃	3) ₄] Br ₂		(ii)	[Pt(NI	$H_3)_4][PtCl_4]$		
	(iii)	[Co Cl(en) ₂ NO	O ₂] Br		(iv)	[Co(N	[H ₃) ₅ SCN] Cl ₂		
	A)	Both (i) and (i	ii) only		B)	(i) , (ii) & (iv) only		
	C)	(iii) only			D)	Both (iii) and (iv) or	nly	

10.		n of the following	ng comp	lexes s				ge trans	fer?		
	A)	$[Co(CO)_6]$				KMn		_			
	C)	$\left[\text{Co(NH}_3)_6\right]^{3+}$			D)	[Ni(H	$[I_2O)_6]^2$	-1			
11.	The g	round term sym	bols of	V^{3+} and	l Co ²⁺ i	ons are	e respec	ctively			
	A)	${}^{3}F_{4}, {}^{4}F_{3/2}$	B)	${}^{3}F_{2}$, ${}^{4}I$	$^{7}/_{2}$	C)	${}^{4}F_{3/2}$	$_{2}^{3}F_{4}$	D)	$^{3}D_{2}$, ^{4}F	$^{7}/_{2}$
12.	In the	reaction of [Co	(NCS)(I	NH ₃) ₅]	²⁺ with	[Cr(H	₂ O) ₆] ²⁺	in wate	er as solv	vent, the f	inal
		nium based proc	luct/s		21						
	A)	is exclusively	[Cr(NC	$S)(H_2C)$	$(0)_{5}]^{2+}$.			. 1.50		(II O) 1 2:	+
	B)	contain [Cr(S minor components		O) ₅] ²¹	as maj	or con	nponen	t and [C	Cr(NCS)	$(H_2O)_5$	as
	C)	-		$N)(H_2C)$	$[0)_{5}]^{2+}$						
	D)	contain [Cr(N minor compo	$(CS)(H_2O)$	$O)_{5}]^{2+}$	as maj	or con	nponen	t and [C	r(SCN)	$(H_2O)_5]^{2+}$	as
13.	Whiel	n among the fol	lowing a	romple	xes obe	v the 1	8 elect	ron rule	9		
13.		$Cl_2(CH_3)(CO)(F$	_	-		•				$Mn_2(CO)_1$	n
	(1)	012(0113)(00)(1	3/,	(11)	(16 001	-0/29	(111)	(00)0,	(11)	.2112(00)10	J
	A) :	i, ii & iv only			B)	i, iii d	& iv on	ıly			
	C)	i & iii only			D)	ii & i	v only				
14.	The th	nree trinuclear c	arbonyl	s know	n are, F	e ₃ (CO) ₁₂ , Os	3(CO) ₁₂	and Ru	3(CO) ₁₂ .	
		se the correct s								,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	A)	All are iso-str									
	B)	$Os_3(CO)_{12}$ and structure.	d Ru ₃ (C	CO) ₁₂ a	re iso-s	tructur	al and	Fe ₃ (CO)	₁₂ has a	different	
	C)	Fe ₃ (CO) ₁₂ and structure.	d Os ₃ (C	O) ₁₂ ar	e iso-st	ructur	al and l	Ru ₃ (CO)) ₁₂ has a	different	
	D)	Fe ₃ (CO) ₁₂ and Ru ₃ (CO) ₁₂ are iso-structural and Os ₃ (CO) ₁₂ has a different									
		structure.									
15.	Which	n among the fol	lowing i	s a flux	cional o	rganor	netallic	compo	und?		
	A)	$Mn(\eta^5 - C_5H_5)$			B)	$Fe_2(C$		•			
	C)	$Co_4(CO)_{12}$			D)	PdCl	2(cod)				
16.	The ca	atalyst used in N	Monsant	o acetic	acid p	rocess	is				
	A)	RhH(CO)(PPI	$h_3)_3$		B)	[Rh(0	$CO)_2I_2]$	-			
	C)	RhCl(PPh ₃) ₃			D)	[Rh(CO) ₄ I ₃]				
17.	Which	n of the followin	ng metal	l ions fa	cilitate	the fo	lding o	f proteir	n chains	?	
	A)	K^{+}	B)	Na ⁺		C)	Ca ²⁺		D)	Fe ²⁺	
18.	The o	xygen carrier in	which	when O	₂ molec	cule at	taches]	Fe(II) is	oxidise	d to Fe(III	(<u>]</u>
	A)	Myoglobin			B)		erithrin			`	•
	C)	Haemoglobin			D)	Hem	ocyaniı	n			

- 19. Which of the following are, respectively, iron storage and transport proteins?
 - A) Rubredoxin and ferrodoxin B) Ferritin and transferrin
 - C) Myoglobin and hemoglobin D) Hemocyanin and hemerythrin
- 20. The number of ATP reducing units used by nature to convert one N_2 molecule to ammonia is
 - A) 12
- B) 10
- C) 8
- D) 16
- 21. The intermediate formed in the following reaction is a

A) carbocation

B) carbanion

C) free radical

- D) carbene
- 22. Arrange the following in the increasing order of acidity.

(i) COOH COOH COOH COOH (iii)
$$NO_2$$
 (iv) NO_2 NO_2

- A) (i) < (ii) < (iv) < (iii)
- B) (i) < (iv) < (iii) < (ii)
- C) (i) < (iii) < (iv) < (ii)
- D) (iii) < (ii) < (iv) < (i)
- 23. Which of the following statements is wrong?
 - A) Benzene, a [6] annulene is aromatic
 - B) Cyclobutadiene, a [4] annulene is antiaromatic
 - C) Cyclooctatetraene, an [8] annulene is nonaromatic
 - D) Cyclodecapentaene, a [10] annulene is aromatic
- 24. The major product of the following reaction is

25. The major product X formed in the following reaction is

- A)
- B)
- C) O
- D)

26. The effective transformation of acetophenone to ethylbenzene can be effected by

- (i) Clemenson reduction
- (ii) Rosenmonds reduction
- (iii) Wolf Kishner reduction
- (iv) LiAlH₄
- A) (i) and (ii) only
- B) (i) and (iii) only
- C) (i) and (iv) only
- D) All the four

27. The following reaction is an application of –

MeOOC COOMe

1) NaH

2) H⁺,
$$\Delta$$

- A) Mannich reaction
- B) Thorpe reaction
- C) Dieckmann condensation
- D) Aldol condensation

28. The correct reagents required for the following transformations are

- A) 'a' is LiAlH₄ at room temperature and 'b' is NaBH₄
- B) 'a' is LiAlH₄ at -78°Cand 'b' is NaBH₄
- C) 'a' is Li in liq.NH₃ and 'b' is NaBH₄/CeCl₃
- D) 'a' is DIBALH and 'b' is NaBH₄

- 29. The number of optical isomers and meso forms possible for the compound CH₃(CHBr)₅CH₃ are:
 - A) 12 optical isomers and 4 meso forms
 - B) 16 optical isomers and 4 meso forms
 - C) 32 optical isomers without meso forms
 - D) 13 optical isomers and 3 meso forms
- 30. The absolute configurations of the following compound D-(+) Xylose is

- A) 2R, 3S, 4S
- B) 2R, 3R, 4S
- C) 2S, 3R, 4S
- D) 2R, 3S, 4R
- 31. The most suitable reagent for the resolution of a racemic 2-butanol is
 - A) acetone

- B) citric acid
- C) optically pure (+) lactic acid D)
- optically pure mannitol
- 32. Which of the following is not true?
 - A) Boat conformation is the preferred conformation of 1, 4-cyclohexanediol
 - B) *cis*-1, 3-dimethylcyclohexane is a *meso* compound
 - C) In cis-1, 3-cyclohexanediol, the diaxial is the preferred conformation
 - D) In 2-bromocyclohexanone, the bromine is at equatorial position
- 33. Benzophenone is used as a sensitizer for 1,3-butadiene to form 1,2-divinylcyclobutane because
 - A) The triplet energy of 1,3-butadiene is greater than that of benzophenone
 - B) The triplet energy of benzophenone is greater than that of 1,3-butadiene
 - C) The singlet energy of benzophenone is much higher than that of 1,3-butadiene
 - D) The singlet energy of 1,3-butadiene and benzophenone are almost equal
- 34. In the reaction sequence

The major products X and Y are

A)
$$\bigwedge_{NO_2}^{Ph}$$
 & $\bigwedge_{NO_2}^{Ph}$ & $\bigwedge_{NO_2}^{Ph}$ & $\bigwedge_{NO_2}^{Ph}$ & \bigwedge_{Ph}^{Ph} & \bigwedge_{Ph}^{Ph} & \bigwedge_{Ph}^{Ph} & \bigwedge_{Ph}^{Ph} & \bigwedge_{Ph}^{Ph}

- 35. Match the following:
 - 1. Terpene

Protein a

Edman method 2.

- b Camphor
- Multibranched polysaccharide of glucose
- Cellulose c
- Linear chain of β-linked glucose
- d Glycogen

- A) 1-b, 2-c, 3-a, 4-d
- B) 1-b, 2-a, 3-d, 4-c
- C) 1-a, 2-b, 3-c, 4-d
- D) 1-b, 2-a, 3-c, 4-d
- 36. The major product of the following photochemical reaction is

$$\frac{\text{NO}_2}{\text{CF}_3\text{COOD}}$$

37. The compound

- Monoterpenoid A)
- B) Diterpenoid
- Sesquiterpenoid C)
- D) Triterpenoid
- 38. Which of the following compounds has/have a β-glycosidic linkage?
 - (I) sucrose
- (II)starch
- (III) cellulose
- (IV) glycogen

Only I & II A)

- Only I,II & III B)
- Only I, II & IV C)
- D) III only
- 39. A vitamin which is a metal complex is
 - Vitamin A A)
- Vitamin B₁₂
- Vitamin C
- Vitamin K D)
- 40. Which among the following lipids are not esters of fatty acids?

B)

C)

- Bee wax (ii) vegetable oils (iii) cholesterol (iv) prostaglandin (v) fat

- i, ii, v only A)
- i, iii, iv only C) B)
- ii, iv only
- D) iii, iv only
- 41. The miller indices of a plane which cuts the three crystallographic axes at 1/2a,-1/3b and 1/3c is
 - $2\overline{3}3$ A)
- B) 233
- <u>2</u>3<u>3</u> C)
- 233 D)

42.	The nu A)	umber of C-ator 2	ms in oi B)	ne unit cell of d	liamond C)	is 8	D)	6
43.	3. Given below are two statements: Statement I: Crystal structure of KCl as determined by X-ray diffraction studies appears to be primitive cubic unit cell even though it is fcc. Statement II: X-ray cannot distinguish between K ⁺ and Cl ⁻ ions due to isoelectronic species Identify the correct choice from the following							
	 A) Statement I is correct and statement II is the correct explanation of statement I B) Statement I is correct and statement II is not the correct explanation of statement I C) Statement I is correct and statement II is incorrect D) Statement I is incorrect and statement II is incorrect 							
44.		Mean free pat	h of a g h of a g	as is proportion as is inversely	nal to th	ect regarding the absolute tempional to pressurional to the squ	perature e	·
	A)	I & II only	B)	I & III only	C)	II & III only	D)	I, II & III
45.	mole o	is the change in of ideal gas from $R = 8.3 \mathrm{JK}^{-1}$	n a pres		_		-	
	A)	-5.7kJ	B)	5.7kJ	C)	-57 kJ	D)	57 kJ
46.		ntropy change or rature is (latent 22 Jmol ⁻¹		fusion of ice =	333.6 J	[/g)		
47.	A) 22 Jmol ⁻¹ B) -22 Jmol ⁻¹ C) 1.2 Jmol ⁻¹ D) -1.2 Jmol ⁻¹ In any spontaneous process taking place at constant temperature and pressure and tending towards equilibrium A) G (free energy) decreases continuously B) G increases continuously C) G decreases, ultimately attaining a minimum value D) G increases, ultimately attaining a maximum value							
48.		is the rotation nuclear diatomic $1/ \theta_{rot} $				rotational part $2T/\theta_{rot}$	cition fu	anction for a $8T/\theta_{rot}$

49. For the reaction $X + Y \rightarrow Z$; starting with different initial concentration of X and Y, initial rate of reaction were determined graphically in four experiments as shown in the following table. The rate law for the reaction from the data in the table is

Sl. No.	[X] _o /M (Initial conc.)	[Y] o / M (Initial conc.)	Rate M s ⁻¹
1	1.6 x 10 ⁻³	5 x 10 ⁻²	10 ⁻³
2	3.2 x 10 ⁻³	5 x 10 ⁻²	4 x 10 ⁻³
3	1.6 x 10 ⁻³	10 ⁻¹	2 x 10 ⁻³
4	3.2 x 10 ⁻³	10 ⁻¹	8 x 10 ⁻³

- A) $r = k[X]^2 [Y]^2 B$ $r = k[X]^2 [Y] C$ $r = k[X] [Y]^2 D$ r = k[X] [Y]
- 50. Given below are two statements

Statement I: The rate constant of a reaction increases with temperature.

Statement II: The increase in rate constant is mainly due to increase in bimolecular collisions.

Identify the correct choice from the following

- A) Statement I is correct and statement II is the correct explanation of statement I
- B) Statement I is correct and statement II is not the correct explanation of statement I
- C) Statement I is correct and statement II is incorrect
- D) Statement I is incorrect and statement II is incorrect
- 51. For a chemical reaction obeying Arrhenius equation which one of the following plots will be linear (k rate constant)
 - A) k versus T

- B) $\log k$ versus T
- C) $\log k \text{ versus } \log T$
- D) $\log k$ versus 1/T
- 52. Primary kinetic salt effect on ionic reaction is best explained by
 - (I) Collision Theory (II) Absolute reaction rate Theory (III) Debye –Huckel Theory
 - A) II & III only
- B) I only
- C) II only
- D) I & III only
- 53. The mean ionic activity coefficient for the electrolyte $M_{\nu_+} X_{\nu_-}$ is related to its ionic strength by (γ_{\pm} is the mean ionic activity coefficient, $z_+ \& z_-$ are the charges of cations and anions respectively, I the ionic strength)
 - A) $\log \gamma_{\pm} = 5.09 z_{+} z_{-} \sqrt{I}$
- B) $\log \gamma_{\pm} = -5.09 z_{+} z_{-} \sqrt{I}$
- C) $\log \gamma_{\pm} = -0.509 z_{+} z_{-} \sqrt{I}$
- D) $\log \gamma_{\pm} = 0.509 z_{+} z_{-} \sqrt{I}$
- 54. Which among the following is a cell without liquid junction?
 - A) $Cu|Cu^{2+}|Zn^{2+}|Zn$
 - B) $Ag|AgCl_{(s)}|HCl(0.1M)|HCl(0.05M)|AgCl_{(s)}|Ag$
 - C) $Pt|H_2(1atm)|HCl(a_1)|AgCl|Ag|AgCl||HCl(a_1)|H_2(1atm)|Pt$
 - D) Both B & C

55.	Which among the following statements are true for overvoltage of an electrode? (I) Overvoltage depends on the nature and physical state of the electrode (II) Overvoltage depends on the physical state of the substance deposited (III) Overvoltage depends on the current density employed								
	A)	I only	B)	I & III	only	C)	I & II only	D)	I, II & III
56.	The m A) B) C) D)	aximum efficients Electrical energy $\frac{\Delta G}{\Delta H} \times 100$ $\frac{\Delta G}{\Delta U} \times 100$ -nFE	•				fuel (ΔG)		
57.	Multila A) C)	ayer adsorption Freundlich iso BET isotherm	otherm	dealt w	ith B) D)	_	nuir isotherm in Isotherm		
58.		irface tension of the pressure π is			γ_0 and	surface	tension of a so	olution is	s γ then the
	A)	$\gamma_0 - \gamma$	-	$\gamma_0 + \gamma$		C)	γ_0 / γ	D)	$\gamma_0 \times \gamma$
59.	Which	of the following	ng is an	associat	ted coll	loid?			
	A)	Gold sol	B)	gel		C)	micelles	D)	aerosol
60.	Match	the following							
		Colur	nn I			Co	lumn II		
	(i) A cataly different		eactant	in	,	legative atalysis	-	
	(i		st and re	eactants	in	b) H	leterogeneous atalysis		

B) i - b, ii - d, iii - a, iv - c

c) Autocatalysis

d) Homogeneous

catalysis

D) i - b, ii - d, iii - c, iv - a

61. The time dependent Schrodinger equation is

A catalyst reduces the

speed of the reaction

One of the products of the

reaction acts as a catalyst

A)
$$\widehat{H} \Psi = E \Psi$$

(iii)

(iv)

B)
$$i\hbar \frac{\partial \Psi}{\partial t} = \widehat{H} \Psi$$

C)
$$\nabla^2 \Psi + \nabla \Psi = E \Psi$$

D)
$$-\frac{\hbar^2}{2m}\frac{\partial^2 \Psi}{\partial x^2} + V \Psi = E \Psi$$

								- 2	
62.	If the o	energy of a pared for the exci	rticle in a	the par	al box o ticle int	of edge l	ext higher ($\frac{3h^2}{8mL^2}$ the energy level	is
	A)	$\frac{3h^2}{8mL^2}$	B)	$\frac{6h^2}{8mL^2}$		C)	$\frac{9h^2}{8mL^2}$	D)	$\frac{3h^2}{4mL^2}$
63.	The nu A)	umber of radia 3, 3	l and ang B)	gular no 2, 2	des in a	a 4f orb C)	ital are responded of the original of the orig	pectively D)	0, 2
64.	The ef A)	fective nuclea 3.9	r charge B)	felt by 6.7	a 2p ele	ectron o	of a nitroger 7.0	n atom is D)	4.2
65.	The bo	ond order of N 2	O bond B)	in nitric 2.5	oxide i	is C)	3	D)	1.5
66.	Which (I) (III)	NO ₃ , NF ₃ NF ₃ , HN ₃	ing pairs	are iso	structur (II) (IV)	ral? NO ₃ , NH ₃ ,			
	A) C)	I, II & IV on I & IV only	ly		B) D)	I & II II & I	only V only		
67.		round term syr \sum_{g}^{1}	nbol of a B)	$^{3}\sum_{g}^{0}$	lecule i		$3\sum_{g}$	D)	$^{1}\sum_{g}$ -
68.	The ty A) C)	rpe of molecula Dipole – dipo Ion- dipole		ctions in	n liquid B) D)	Dipole	e –induced	dipole induced dip	oole
69.	Match	the following	molecul	les to th	eir poir	nt group	os.		
	I) C II) F III) S	POCl ₃ b	Point gr a) C _s b) O _h c) C _{3v} d) D _{2h}	roup					
	A) C)	I - d, $II - c$, $II - c$, $II - d$, I			B) D)		II – a, III – II – c, III –		
70.	Which A)	among the fo C_{2v}	llowing B)	point gr C _{3V}	oups is	both al	Delian and C_{2h}	cyclic? D)	C_4
71.	For CO A) B) C) D)	O ₂ molecule The asymme Bending vibr Symmetry str Symmetry str	ations is retching	Raman is Rama	active an and	and IR IR inact	inactive tive		

72.		product of C	$C_{2(x)} \times C_{2(y)} i$ B)	s equal to σ_{xy}	C)
73.	Whic	ch among th	ne following	molecules	show pure

 CO_2

II)

A)	I, II & V only	B)	II & V only
C)	II, IV & V only	D)	I, II, IV & V only

III)

HCl

74.	All t	he three bra	nches (P, Q	& R) are	seen in the v	ibration- ro	otational spec	ctra of th	e
	mole	cule							
	A)	NO	B)	CO	C)	HCl	D)	DCl	

A)	I, II, III & V only	В)	II & IV only	
C)	I, III & V only	D)	All the above	

77. Match the following carbonyl stretching frequencies with the correct compounds

Frequencies (cm ⁻¹)	Compound
I) 1735	a) 0
II) 1820	b) O
III) 1770	c) •
IV) 1725	d) 0

78. The number of proton NMR signals shown by the compound

- A)
- 6
- B) 7
- C) 8
- D) 9
- 79. In the mass spectrum of C_2H_4ClBr , the ratio of intensities of m/z 142: 144: 146 will be
 - A) 4:3:1
- B) 2:4:1
- C) 3:4:1
- D) 3:3:1
- 80. The esr spectrum of a radical with a single magnetic nucleus is split into 6 lines. What is the spin of the nucleus?
 - A) 3
- B) 5/2
- C) 5
- D) 3/2

- 81. Which of the following is a redox indicator?
 - A) Methyl orange
- B) Methyl red
- C) Phenolphthalein
- D) Diphenylamine
- 82. The numbers 3.47, 2.43, 8.35 and 7.85 when rounded off to two significant figures are respectively as follows
 - A) 3.5, 2.4, 8.3 and 7.8
- B) 3.5, 2.4, 8.4 and 7.9
- C) 3.5, 2.4, 8.4 and 7.8
- D) 3.5, 2.4, 8.3 and 7.9
- 83. The standard deviation of the mean is called as
 - A) Population standard deviation
 - B) Coefficient of variation
 - C) Relative standard deviation
 - D) Standard error
- 84. The average particle size in gravimetric analysis is increased by
 - A) Using concentrated reagents for precipitation
 - B) Using low temperature condition for precipitation
 - C) Primary precipitate is subjected to digestion
 - D) None of the above
- 85. Match the following:

Techniques	Type of equilibrium
(i) Liquid chromatography	a) Partition between gas and liquid
(ii) Gas chromatography	b) Partition between super critical fluid
	and bonded surface
(iii) Super fluid chromatography	c) Adsorption
(iv) Column chromatography	d) Partition between immiscible liquids

- A) i-c, ii- a, iii- b, iv- d
- B) i-d, ii- a, iii- b, iv- c
- C) i-d, ii- a, iii- b, iv- d
- D) i b, ii- a, iii- d, iv- c

86.	Which	h among the fol Flame ionizat	_		detection		ods used			
	III)	Mass spectra			IV)		nal cond			or
	A) C)	I & II only III & IV only			B) D)	II & II I, II, I	II only II & IV			
87.	Biome A) B) C) D)	nolecules that are sensitive to pH & harsh environments are best separated b Ion exchange chromatography Gas chromatography Gel permeation chromatography Electrophoresis							arated by	
88.	7.6 mi	romatographic n with a base li f 9.4 min with a is	ne widtl	h of 0.9	5 min a	$nd \gamma - 1$	Γerpiner	ne elute	with a	retention
	A)	2. 25	B)	1.12		C)	3.60		D)	1.80
89.	sample	a monochroma e solution in cel ion in intensity on?	l 1cm th	nick, if t	the tran	smittand	ce is 0.2	, what	will be	the overall
	A)	88 %	B)	80 %		C)	96 %		D)	90 %
90.	interfe	among the following among	?							e ionization
	(I) C	Ca (II) l	K	(III)	Sr	(IV)	Cs	(V)	La	
	A) C)	I & II only I, II & IV onl	у		B) D)	,	k IV on V only	ly		
91.	succes	They give rise to oxides in the flame. Their vapors corrode the instrumental parts.						flame is used		
92.	from 1								•	
93.	A solu A) C)	ution with a pH decreased by increased by	100 tim	ies	neutral B) D)	increa	I ⁺ ion co sed by 1 ased by	100 tim	es	

94.	In which of the following electrochemical analytical methods is a fixed potential employed?												
	A)	Voltamet	•		B)		perometry	,					
	C)	Cyclic vo	Itametry		D)	Stri	pping Volta	metry					
95.	_	In polarography the relationship between limiting current and concentration of the analytic sample is given by											
	A)	A) Ohms law B)					nst equatior	ı					
	C)	Faraday's	s law		D)	Ilko	vic equation	n					
96.	Whe	When the pH of a solution is altered by 1 unit the emf of the hydrogen electrode will											
	A)	Increase b	•		B)	Decrease by 59 mV							
	C)	Increase b	oy 0.059 m	V	D)	Wil	l not change	e					
97.	Phas	Phase transitions of a solid can be identified by											
	A)	TG	B)	DTG		C)	DSC	D)	Both B &	C			
98.	Matc	Match the following for a radiometric precipitation titration.											
	(Column I				Co	lumn II						
	i)	The titrant i	s labelled v	with its		a) F	Radioactivit	y of the solu	ition has a				
	radioactive isotope					minimum at the equivalence point							
		,					b) The activity of the solution						
	radioactive isotope							the equivale					
	iii) Both reaction partners are labelled						-	of the soluti					
		with radioac	ctive isotop	es		i	ncreases aft	er the equiv	alence point.				
	A)	(i) - c, (ii)) – a, (iii) –	- b	B)	(i) -	- b, (ii) – c,	(iii) – a					
	C)) – a, (iii) –		D)		-c, (ii) $-b$,						
99.	3.7×	10 ¹⁷ disinte	egrations pe	er second	l is ca	alled							
,,,	A)	curie	B)			C)	rad	D)	rem				
100.	Whi	ah of the fall	owing is a	diadwan	togo	of oativ	vation analy	raia?					
100.	A)	Which of the following is a disadvantage of activation analysis?A) The technique is not very sensitive.											
		B) The technique is not very sensitive. B) The technique is not suitable in the case of Al, Mg, Ti, V and Nb.											
		C) As it is a destructive technique, not suitable for jewels, precious stones, etc.											
	D)												
101.	Which among the following is false with respect to microwave organic synthesis?												
		A) Highly ordered crystalline materials are poorly absorbing.											
	B)	B) Compounds with high dielectric constants, such as water, ethanol and											
	C)	acetonitrile, tend to heat readily. Less polar substances like aromatic and aliphatic hydrocarbons or compounds											
	C)	with no net dipole moment do not interact under microwave irradiation.											
	D)	Changes to the physical properties of a compound or material will not have											
	D)	any influence on the susceptibility to microwave radiation.											

102.	Nitrile	hydratase enzyme from Rhodococcus is used to convert									
	A)	acrylonitrile into acrylamide									
	,	B) penicillin G into 6-aminopeniillanic acid									
	C)	lactose into glucose and galactose									
	D)	ethanol to acetic acid									
103.		Which among the following cannot be regarded as a possible 'green' advantage in using Phase Transfer Catalysts (PTC)?									
	A)	Because of reduced activation energy, these reactions can often be run only at higher temperatures, which may reduce by-product formation									
	B)	PTC catalysed reactions are often very rapid, one reason being that anions in the organic phase have few associated water molecules, making them highly									
	C)	reactive through reduction in activation energy. The product separation is often simple, resulting in less waste.									
	D)	Since the reaction is two phase, simple benign solvents can often be used since PTC avoids the need to find a solvent that will dissolve all reactants									
104.	Atom	economy is defined by									
	A)	$100 X \frac{\text{actual quantity of products achieved}}{\text{theoretical quantity of products achievable}}$									
	B)	$100 X \frac{\text{yield of desired product}}{\text{amount of substrate converted}}$									
	C)	$\frac{100 X}{\text{Relative molecular mass of desired product}}$									
	D)	$100 X \frac{\text{amount of carbon in product}}{\text{total amount of carbon present in reactants}}$									
105.	The na	nomaterial used in LED and fluorescent displays is									
	A)	Si B) CdSe C) ZnS D) Li_3N									
106.	(I)	among the following are top – down fabrication of nanomaterials? Photolithography (II) e- beam lithography Venour phase synthogic (IV) Soft lithography									
	(III)	Vapour phase synthesis (IV) Soft lithography									
	A) C)	I, II, & III only B) I & II only I, II & IV only D) II & III only									
107.	-	ezoelectric ceramic material which is used in gas lighters is									
	A) C)	Al ₂ O ₃ B) SiO ₂ Cordierite D) Lead Zirconium Titanate (LZT)									

108.	What is A)	s the colour of Blue	_	nopartio Green	cle in th	e size (· C)	~30nm)? Red	D)	Colourless
109.		among the foll O (ii) N ₂ O (ii	_		•	-		_	acetyl nitrate
	A) C)	(i), (iii), (iv) & (i), (ii), (v) &	, ,	•	B) D)	(i), (ii), All the	, (iii), (iv) & (v above	vi) only	
110.		spheric ozone d FC (ii)	epletion N ₂		nly caus CH ₄	sed by (iv)	NO		
	A) C)	(i), (iii) & (iv) (i), & (iv) only	•		B) D)	(i), (ii) All the	& (iii) only above		
111.	Acid ra	ain is a rain wh	-	H of ra > 5.6	in wate	r is C)	< 5.6	D)	between 7 & 5.6
112.	A) B) C) D)	y of soil is incr Increasing alk Increasing the Increasing acid Increasing the	alinity cation e dity anion ex	exchang xchang	e capac	ity			
113.	Match	Monomer	nonome	rs with	the cor		ymer.		
			_CI		•				
		(i)			a) Or				
		(ii) F ₂ C=	=CF ₂		<i>'</i> 1 •	ystyrene	2		
		(iii) =	─Ph ─CN		c) PV(
		(iv) ===	CIN		d) Tef	IOII			
	A) C)	i -d, ii - a, iii- i- b, ii - a, iii -			B) D)		- d, iii - b, iv - - c, iii - b, iv -		
114.	Super A) C)	glue is a polym methyl-α —cy Caprolactam		late	B) D)		acrylate and formalde	hyde	
115.	Styren A) C)	e can undergo p Radical polym Anionic polyn	nerisatio	n	via B) D)	Cation All the	nic polymerisa above	tion	

116. Match the following

	Column I	Column II
a)	Z-poly(2-methyl-1,3-butene)	(i) A polycarbonate
b)	Polybutylenesuccinate	(ii) A Plasticizer
c)	Dibutyl phthalate	(iii) Natural rubber
d)	Laxen	(iv) A biodegradable synthetic polymer

- A) a- ii, b- i, c- iv, d- iii
- B) a- ii, b- iii, c- iv, d- i
- C) a- iii, b- i, c- iv, d- ii
- D) a- iii, b- iv, c- ii, d- i
- 117. Which among the following drugs contain a β –lactum ring?
 - A) Paracetamol
- B) Penicillin

C) Morphine

- D) Diazepam
- 118. The first effective antibiotic drug introduced clinically was
 - A) Sulphanilamide
- B) Gentamicin

C) Penicillin

- D) Chloramphenicol
- 119. Match the following items of column I and column II

Column I	Column II
(i) Antacid	a) loratadine
(ii) Analgesics	b) Barbituric acid
(iii) Tranquiliser	c) Aspirin
(iv) Antihistamine	d) Cimitidine

- A) i-d, ii-a, iii-b, iv-c
- i d, ii b, iii a, iv c
- C) i b, ii a, iii d, iv c
- i d, ii c, iii b, iv a
- 120. An alkaloid which is used as an antimalarial drug is
 - A) Morphine

B) Nicotine

B)

D)

C) Quinine

D) Caffeine